Distinct External Signals Trigger Sequential Release of Apical Organelles during Erythrocyte Invasion by Malaria Parasites
نویسندگان
چکیده
The invasion of erythrocytes by Plasmodium merozoites requires specific interactions between host receptors and parasite ligands. Parasite proteins that bind erythrocyte receptors during invasion are localized in apical organelles called micronemes and rhoptries. The regulated secretion of microneme and rhoptry proteins to the merozoite surface to enable receptor binding is a critical step in the invasion process. The sequence of these secretion events and the external signals that trigger release are not known. We have used time-lapse video microscopy to study changes in intracellular calcium levels in Plasmodium falciparum merozoites during erythrocyte invasion. In addition, we have developed flow cytometry based methods to measure relative levels of cytosolic calcium and study surface expression of apical organelle proteins in P. falciparum merozoites in response to different external signals. We demonstrate that exposure of P. falciparum merozoites to low potassium ion concentrations as found in blood plasma leads to a rise in cytosolic calcium levels through a phospholipase C mediated pathway. Rise in cytosolic calcium triggers secretion of microneme proteins such as the 175 kD erythrocyte binding antigen (EBA175) and apical membrane antigen-1 (AMA-1) to the merozoite surface. Subsequently, interaction of EBA175 with glycophorin A (glyA), its receptor on erythrocytes, restores basal cytosolic calcium levels and triggers release of rhoptry proteins. Our results identify for the first time the external signals responsible for the sequential release of microneme and rhoptry proteins during erythrocyte invasion and provide a starting point for the dissection of signal transduction pathways involved in regulated exocytosis of these key apical organelles. Signaling pathway components involved in apical organelle discharge may serve as novel targets for drug development since inhibition of microneme and rhoptry secretion can block invasion and limit blood-stage parasite growth.
منابع مشابه
A family of chimeric erythrocyte binding proteins of malaria parasites.
Proteins sequestered within organelles of the apical complex of malaria merozoites are involved in erythrocyte invasion, but few of these proteins and their interaction with the host erythrocyte have been characterized. In this report we describe MAEBL, a family of erythrocyte binding proteins identified in the rodent malaria parasites Plasmodium yoelii yoelii and Plasmodium berghei. MAEBL has ...
متن کاملA family of chimeric erythrocyte binding proteins of malaria parasites (Plasmodium bergheiyPlasmodium yoelii yoeliiyapical membrane antigen 1yrhoptryymerozoite)
Proteins sequestered within organelles of the apical complex of malaria merozoites are involved in erythrocyte invasion, but few of these proteins and their interaction with the host erythrocyte have been characterized. In this report we describe MAEBL, a family of erythrocyte binding proteins identified in the rodent malaria parasites Plasmodium yoelii yoelii and Plasmodium berghei. MAEBL has ...
متن کاملInteraction between Plasmodium falciparum Apical Membrane Antigen 1 and the Rhoptry Neck Protein Complex Defines a Key Step in the Erythrocyte Invasion Process of Malaria Parasites*
Invasion of host cells by apicomplexan parasites, including Plasmodium falciparum and Toxoplasma gondii, is a multistep process. Central to invasion is the formation of a tight junction, an aperture in the host cell through which the parasite pulls itself before settling into a newly formed parasitophorous vacuole. Two protein groups, derived from different secretory organelles, the micronemal ...
متن کاملMolecular Identification of a Malaria Merozoite Surface Sheddase
Proteolytic shedding of surface proteins during invasion by apicomplexan parasites is a widespread phenomenon, thought to represent a mechanism by which the parasites disengage adhesin-receptor complexes in order to gain entry into their host cell. Erythrocyte invasion by merozoites of the malaria parasite Plasmodium falciparum requires the shedding of ectodomain components of two essential sur...
متن کاملSubcompartmentalisation of Proteins in the Rhoptries Correlates with Ordered Events of Erythrocyte Invasion by the Blood Stage Malaria Parasite
Host cell infection by apicomplexan parasites plays an essential role in lifecycle progression for these obligate intracellular pathogens. For most species, including the etiological agents of malaria and toxoplasmosis, infection requires active host-cell invasion dependent on formation of a tight junction - the organising interface between parasite and host cell during entry. Formation of this...
متن کامل